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Almtract--A linear shear flow is present in a fluid along one side of a fixed wall; the fluid on the other 
side is at rest. However, when there is a slit or a hole in the wall, then the shear flow will induce a motion 
in the fluid on the second side through a shearing force across the gap. We consider the Stokes flow 
behaviour for such a phenomenon in a number of different geometries, with particular interest in the 
singular solutions generated when the width of the slit, or size of the hole, is small_ 

1. I N T R O D U C T I O N  

The purpose of the present paper is to consider how the effects of a flow along a wall can be 
transmitted through a slit or a hole in the wall. We assume that the fluid fills all the space on both 
sides of the wall, and that if it were not for the presence of the slit or hole then the fluid would 
be at rest on one side. When the width of the silt, or the size of the hole, is small then, whatever 
the nature of the flow on the external side of the wall, it can be approximated there by a linear 
shear flow. (The one exception would be if the external flow in the neighbourhood of the hole is 
a stagnation point flow; this is not considered at all in the present paper.) Further, it is sufficient 
to measure the effects through Stokes flow calculationswwhen the local Reynolds number Re is 
based on the length scale of the hole, we can realistically take Re to be small. Consequently, the 
discussion here comprises a number of relevant solutions of the equations for Stokes flow in both 
2-D and 3-D. 

The search for such solutions has a long and distinguished history. The classical results are 
well-presented in the text of Happel & Brenner (1983), and more recent results, motivated by the 
interest in separated Stokes flows, have been given in the survey article by O'Neill & Ranger (1979). 

We are able to solve exactly the 2-D Stokes flow which measures the effect of a linear shear flow 
past a slit of finite width in an infinite plane wall; as the width a tends to zero a singular solution 
is derived, with magnitude proportional to a 2. There is no net mass flux across the silt; in fact, 
there is no mixing at all of the fluid on the two sides of the wall, and the total effect is transmitted 
by the shear stress across the slit, even when it has finite width. The flow represented by the singular 
solution is purely radial, being towards the slit on the upstream side of the shear flow, and away 
from the slit on the downstream side; there is a resultant net mass flux induced in the otherwise 
quiescent fluid in the same direction as the shear flow. This behaviour is complementary to the 2-D 
source flow through a slit in a wall. 

The other basic solution obtained exactly is for the linear shear flow along an infinite plane wall 
which has a circular hole of finite radius c. There is no mass flux across the hole in this case either, 
for the same physical reasons as mentioned above. Again, the limiting case as c tends to zero can 
be calculated, leading to a singular solution which represents a fully radial (though asymmetric) 
flow in the spherical sense. 

Examples of the effect of the singular behaviour in different geometries are presented for both 
the 2-D and 3-D situations to illustrate the possibilities present. 

Finally, we present solutions for shear flow past narrow straight line slits of finite length; these 
represent the intermediate situations between the (2-D) slit and the (3-D) hole, and simple 
descriptions of the behaviours are possible to help develop a clear understanding of the attendant 
flows. 

Although the comments so far have referred to flows in a single, uniform fluid, it is a 
straightforward task to extend all the results mentioned to the two-phase situation, where there 
are different fluids on either side of the slit or hole. Because the basic action of a slow viscous flow 
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is just to transmit a shear stress across the slit, with the consequence that no fluid flows through 
the gap and there is no mixing, it can be shown that these results have an immediate applicability 
to the corresponding two-phase flow. In fact, the streamlines for the perturbed flow are unchanged 
from those found previously, only the magnitude of the velocities require adjustment, the degree 
depending very simply on the ratio of the viscosities. Therefore, all the results required for the 
two-phase flows can be written down with no further calculations. 

2. FLOWS PAST INFINITE SLITS 

(A) The first basic problem we consider concerns the 2-D linear shear flow past a slit in a plane. 
Although the calculations are reasonably straightforward, they are presented here fully because the 
basic ideas carry over to more detailed cases later. Specifically, the plane occupies the region Ix I > a 
of y = 0, where a is a non-dimensional constant; the shear flow is externally driven in the upper 
half-plane y/> 0. Consequently, we must find a solution of the biharmonic equation V4~b = 0 for 
the stream function ~(x,y) which satisfies 

~ , = ~ y = O  on y = O ,  Ix J>a ,  ]. 
[1] 

J ~ ,~y2  as y - ~ ,  ~ 0  as y ~ - o o .  

The velocities in the x- and y-directions are then given by u = ~y and v = - ~ x ,  resp~tivdy. 
The solution can actually be written down as a special case of the work of O'Neill (1977) 
and Wakiya (1978), who considered the slow linear shear flow over a cylindrical trough, with 
circular cross-section, in a plane. The trough in the lower half-space had the profile 
x 2 + ( y  + d )  2 = a ~ + d2(a, d > 0), intersecting the plane y = 0 in the points x = _+a for all d; when 
d-~ oo the particular situation posed above emerges. Their solutions used bipolar coordinates. 

More directly, with the advantage of a simpler geometry, we use the fact that every function can 
be decomposed into even and odd components to introduce a symmetry into the problem; i.e. we 
write ff(x,y) = ~(x,y) + ~2(x, y), where ffl is antisymmetric and ~b2 is symmetric in y. It is then 
necessary that ~,1 and ¢2 are biharmonic functions satisfying 

~q=~ply=O on y=O, Ix J>a ,  1 

~ l = ~ k l , = O  on y = O .  IxJ<a,I  [2a] 

~ - - - + ½ y '  as y ~ + ~ ;  

and 

~2=~fsgnx,  ~2y=0 on y = 0 ,  JxJ>a,~ 
~=y = ~2 , .  = 0 on y = 0, I xl  < a, ~ [2b] 

~b2~'½y 2 a s  y~___o0; 

the constant f represents the net flux through the slit, with no loss of  generality in setting $2 as 
antisymmetric in x on the plane. If follows that St represents the behaviour where tbe sbear flow 
is in the same direction on both sides of the plane, and $2 has the shear flow in opposite directions 
on the two sides of the plane. The no-slip conditions are satisfied on the plate y = 0, Ix I > a. 
However, it should be emphasized that the conditions for y = 0, ix] < a are only those which are 
necessary for the symmetries given in the definitions for ~bt and $2. In fact, no physical conditions 
can be set, a priori, across the slit except that the velocities and str~ses be continuous across 
y = 0, Ix [ < a, which are the basic physical requirements across any line drawn within the fluid. 

Now problems where there is a flow through, or past an aperture arc notoriously difficult; for 
example, the work of Weinbaum (1968) indicated that there is no assurance that a separation 
streamline will separate from the sharp corner, nor can it be expected that this streamline will be 
a straightline--the recent study by Higdon (1985), where the numerical solution for the shear flow 
past a number of different geometries has provided ample, extremely clear evidence of these 
possibilities. Also Dagan et al. (1982) have indicated the problems inherent in fixing the form of 
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the outer boundary conditions when there is a flux through the slit. However, these difficulties 
evaporate in the present situation where it is seen that we can simply write down the solution 

~2(x, y)  - ½y~, V x, y, [3] 

to the problem defined by [2b]; there is no flux through the slit and the separation streamline ~ = 0 
is, in fact, just the x-axis. O'Neill (1977) showed for the circular trough that the separation 
streamline does lie off the x-axis when d is finite, but that it becomes identical with y = 0 in the 
limit as d ~ oo. 

Next, to satisfy [2a], it is sufficient to write ~b~(x, y ) =  yx(x, y), where WX = 0, plus 

X = 0  on y = 0 ,  l x l > a  1 

Xy=0 on y = 0 ,  I x l < a f  [4] 

X"+½y as y--*+__oo. 

For y I> 0, we write 
I 

x = ~y + L [5] 

taking Fourier transforms in x, defined by 

~(~, y)  = e ~ ( x ,  y)dx, 

we see that the solution of  the transformed harmonic equation is 

-- 2nA(~)e -I'ty, y 1> 0, 

for some function A (a). Satisfying the conditions on y = 0 then leads to the dual integral equations: 

f0 j A ( a t ) c o s a x d a = 0 ,  I x l > a ;  ~tA(~t)cos~.xda=¼, I x l < a .  
0 

This is a standard problem, and the solution can be found in Sneddon (1966): 

A (ct) = last - i Ji (a~t), 

where J~ is the Bessel function. Taking the inverse transform (Erdelyi 1954), gives, eventually, 

l y l s g n y  
d/---½y24 2x/~ {(y2-xZ+a2)+[(yZ+x:)2+2a2(y2-xZ)+a'~}½, Yx, y; [6] 

this agrees with the particular solution presented by O'Neill (1977) and Wakiya (1978) as d ~ oo. 
In particular, we note that u(x, O) = (a s - x~)½/2 for Ix l < a; hence, although the velocity is zero 
at the sharp comer of  the slit, the stresses have a square-root singularity there. Further, close to 
the comer  x = - a ,  y ffi 0 we have 

when x + a  ffi - p  cos ~ , y  ffi p s in~ to give the classical solution of  Carder & Lin (1948). The 
streamlines are sketched in figure 1; the maximum deflection of  the streamline ¢, ~ y 2  (for large 
x)  is d(y)ffi y( l  + y2)~_ y2 (at x ffi 0), so that d ( 0 ) =  0 and d (oo )=  ½. 

The expression for ~ can be given most simply in terms of  elliptic coordinates ~, t/, defined by 
x = a  cosh~ sin t / , y - - a  sinh~ cosq.  The plane (with the slit removed) is given by r / =  +n/2 
where, generally, t/(ffieonst) are hyperbolae with x = +a,y •0  as foci; ~(fficonst) represent 
ellipses with the same foci. In terms of  these coordinates, ~b = (a2e ~ sinh ~)/2.cos2q in the upper 
half-plane. 

When polar coordinates r, 0 are introduced by x ffi r cos 0, y ffi r sin 0, it also follows that 

r sin 0 - 2 
~b = ~ {[(a - r 2 cos 20) + (r '  - 2a2r 2 cos 20 + a')½]~ + x/~r sin 0}, [7] 

in the upper half-plane. Of  particular interest is the limiting situation as a ~ 0, and here [7] shows 
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Figure 1. StreamSnes for the flow represented by [6]; the shear flow is in the upper half-plane and the 
flow induced across the slit is in the lower half-plane. 

= [r: + (a2/4)]sin 2 0 + O(a ' ) .  The first term represents the basic shear flow, and the second term 
is the dominant contribution, of  O(a2),  when the slit is narrow. We write 

y2 
~'(x, y) = sin 2 0 = - -  [8] X 2 d - y  2 

and observe that this represents a fundamental 
corresponding velocities are 

2x2y 
U = ~y -- (x2 + y2)2 and 

singularity for the 2-D Stokes equation; the 

2xy 2 
V = - ~x = (x ~ + y2),. [9] 

In the upper half-plane the limiting behaviour for small a is given by ~ = y2.{. ( a 2 ~ / 4 )  and in 
the lower half-plane by -a2~p /4 .  The flow represented by ~' is entirely radial, with 
q / =  r -  ~ ~0 = 2r-  ~ sin 20 and : = - ~', = 0, where q/ and : are the radial and transverse 
velocities, respectively. Hence the induced flow in the lower half-plane for small a is radial, with 
fluid being drawn towards the narrow slit in the third quadrant, and then expelled away from it 
in the fourth quadrant; all streamlines pass through the origin. 

The author is grateful to Professor Allen Chwang for showing the relation of  the singularity [8] 
to the set of  singular solutions presented by Chwang & Wu (1975). The function ~'s is defined as 
a unit Stokeslet in the x-direction, and ~'R as a unit rotlet in the z-direction (i.e. perpendicular 
to the x, y-plane) with 

~ s = y ( l - l n r )  and ~ P R = - l n r .  [10] 

He then considered the combination 

tgP s 
~Pc = - - -  + ~vR+ 1, [11] ay 

which represents the sum of  a Stokes doublet and rotlet, where the constant 1 is added to ensure 
that ~Pc = 0 on y = 0; substitution of [10] into [11] shows that ~'c = ~v, as given in [8]. Further, 
the corresponding velocities Us -- - I n  r + x2/r 2, V s = x y  /r 2, UR = - y /r ~ and VR =~ x /r 2 combine 
through [10] to give [9], thereby providing agreement with the expressions of  Chwang & Wu (1975). 

We note, finally, that the singular solution ~# = ~' is complementary to ~ oc 0 - sin O cos 0, which 
represents the Stokes flow through a narrow slit at the origin in the plane y == 0; again, the flow 
is completely radial with q/oc r-~ sin 2 0. 

One immediate extension is to consider the geometry with an infinite set of  equally spaced 
(narrow) slits in the wall y = 0 at x = na, for all integers n. This situation would lead to a perturbed 
flow proportional to 

y~ 
~',= ~ y>~O. 

( x - n a ) 2  + y 2' n m  - - ~ 0  
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Now this series can be summed (cf. Hansen 1975) for 

and so ~', ~- ny/a as y --, oo, indicating that a uniform stream has been induced. The streamlines 
with ~', ~< 1 all pass through the singular points x -- na, y ffi O, whereas those with ~', > I are 
smooth curves with periodic behaviour. The flow in the lower half-plane is sketched in figure 2. 

(B) We now investigate the following situation: fluid flows around the circular cylinder r -- 1, 
which has a narrow slit at the point r -- 1, 0 -- 0; see figure 3. I f  there were no slit, then ~ ffi 0, r < 1 
and ~ = r 2 - 2 In r -- 1, r > 1--we wish to calculate the perturbed flow inside the cylinder when 
there is a slit. 

One approach would be to consider the rotating flow outside a circular arc which subtends a 
finite angle at the origin, and then take the limiting case as the angle tends to zero. The analysis 
of Hasimoto (1979), who considered the oblique flow past a circular arc could be adapted for such 
a situation, though, for a very narrow gap, his result is directly applicable. However, it is found 
that the limiting case is a rather complex singular perturbation problem where the domain inside 
the circular arc maps, through the Joukowski transformation, onto a domain which itself has 
asymptotically small dimensions. Consequently, we can more easily use the basic singular solution 
~' calculated above to find the flow induced inside the cylinder through a narrow slit. 

Therefore, we write 

~b = ~ sin 2 ~b + ~bp(r, 0), r <~ 1, [12] 

for the stream function inside the cylinder, where the first term is proportional to ~' in the new 
coordinates, as represented in figure 3; E is a constant which is proportional to the square of  the 
width of  the slit in the cylinder. Now 

1 - 2r cos 0 + r 2 COS 2 0 
sin 2 ~b -- 1 - 2r cos 0 + r 2 ' r ~ 1,  

so that satisfying the necessary boundary conditions ~ ~ , f f i 0  on r =1  implies 
~p = -~(1 - c o s  0)/2 and @p, = 6(1 + cos 0)/2 on r - 1. These conditions lead to a very simple 
closed form solution which can be found for the biharmonic function @p(r, O) in the form 
a(r) + b(r)cos O, and completing the details shows that 

~ ¢ C  -2rc°sO'l'r2cos20 1 : 3 l ) 
= t - i t  - ] + ~ r  cos0 [13] 

1 - -  2r cos 0 + r 2 

In particular, (~, ,) , .  ~ ffi ~(1 - cos 0)-1, which is positive for all O, and so there is no separation from 
the walls of  the cylinder. When the streamlines are plotted they show a set of  closed loops within 
the circle r ~< 1, all of  them passing through the singular point r = 1, 0 ffi O. 

Figure 2. Streamlines for the flow induced in the 
lower half-plane for a shear flow in the upper half- Figure 3. Geometry for the shear  flow past  a narrow 

plane p u t  an  infinite set o f  narrow slits, slit in a circular cylinder. 
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Alternatively, if the basic flow is inside the  circular cylinder, and a narrow slit at r = 1, 0 = 0 
leads to a perturbed flow outs ide  r = 1, then the stream function for r >t 1 analogous to [13] is found 
to be given by 

(.1 -- 2r cos 0 + r 2 cos 2 0 1 1 1 ) 
= E 4- 2 In r - ~ + ~ r cos 0 [14] 

1 - - 2 r c o s O  + r  2 

A uniform stream with velocity ~/2 is induced at infinity in the direction corresponding to 
0 -- ~ /2- -another  example of  the so-called Jeffery paradox [see, for example, Dorrepaal et  al. 
(1984)]. There are stagnation points at r = 1, 0 = +~ /2 ,  and the fluid domain outside the circular 
cylinder is divided into two distinct regions by the streamlines which pass through these points; 
all the streamlines to the right pass through the singular point r = 1, 0 = 0. Finally, if there are 
equal-sized slits at the two points r = 1 and 0 = 0, 7t, then the induced flow at infinity is equivalent 
to a closed circular cylinder rotating with angular velocity of  magnitude E. It is easy to develop 
other different extensions from the basic solution [14]. 

(C) To complete the discussion of  2-D flows, we return to the geometry of  part A and take the 
basic linear shear flow in they upper half-plane to be in the z-direction, normal to the x, y-plane. 
The only resultant velocity component  is in the z-direction, and can be written as w ( x ,  y ) ,  where 
w satisfies the harmonic equation V2w = 0. Further, w = 0 on y = 0, Ix t > a, wy = 0 on 
y = 0, Ix I < a, with w - y as y ~ oo and w - ,  0 as y -* - oo. The calculations required are identical 
to those performed earlier to solve [4], and show 

1 2 w = 2 - ~  [ { (y  - x2 + as) + [(y2 + x2)2 + 2a: (y2  _ x 2) + a21½}½ + x / ~ l y l s g n y ~ .  

When we take the limit as a--* 0, it is seen that 

- -  ( ° ; )  a2 Y = r +  sin0, y~>0. 
w "~Y -~ 4 x2 + y2 

Hence the singular solution for a linear shear flow parallel to a narrow slit can be represented by 

y sin 0 
W = x-T-~y 2 = - - ' r  [15] 

this represents a potential doublet in the y-direction, with W = c3(ln r ) /ay .  

It is now straightforward to combine [8] and [15] to compute the effect when there is a general 
angle between the straight-line narrow slit of  infinite length and the direction of  the shear flow. 

3. FLOWS PAST A C I R C U L A R  H O LE 

(A) To avoid unfamiliar notation, we proceed to redefine all the physical quantities, and there 
is no overlap between that used in this and the previous section. The basic problem investigated 
concerns the linear shear flow along a plane which has a circular hole. We introduce a cylindrical 
coordinate system (p, 0, z), where the plane is represented by z = 0, and the hole is z = 0, p ~< c. 
The radial, aximuthal and axial velocities are written as u, v and w respectively, and the shear 
velocity in the upper half-plane z t> 0 is 

u - 2 z c o s 0 ,  v ~ - - 2 z s i n O , ,  w - 0 ,  z ~ o o ;  [16] 

in the lower half-plane all velocities tend to zero at infinity. 
We again divide the solution into symmetric and antisymmetric parts in z, with the latter being 

given by 
u2 = z cos  O , v2 = --  z sin O, % = 0 ,  Vz. [17] 

To evaluate the symmetric part, which comprises most of  the remainder of  this section, it is 
necessary to solve the Stokes flow equations in the domain z />  0 subject to the conditions 
u I ~--- Z C O S 0 ,  V I ~--- --Z sin 0, w~ -- 0 as z -* oc, plus u~ = vm = w] = 0 on z = 0, p > c; u~z = v~z = w~ = 0 
on z = 0, p < c. The final solution is then formed by adding u~ + u2, v~ + v~ and w~ + %.  
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We can use the representations introduced by Ranger (1972) in this situation, whereby we write 

u~=[(p-'~,~)~ + p-:x]cosO, t 
v, = - Co - 2 ~ ,  + (p  - iX)p]si  n 0, [18] 

w~ = - L o - ' ¢ , ~  - p - ' ¢ A c o s  O, 

where ~(p ,  z) and X(P, z) satisfy L~l(~')  = 0, L_,(X) = 0, with L_l being the operator 

c32 1 0 c~ 2 
L_l = + 

C3p 2 p ¢~p t~Z 2" 

Further, it is known from further work by Ranger (1978), where a somewhat similar problem is 
investigated, that in the solution for ~ it is sufficient to write ~b = z~b, where ~b(p, z) just satisfies 
L_ I (~b) = 0. In terms of  ~b and X we can express the condition at infinity as X "~ az92, dp ",, flzp 2 with 

and fl constants such that = + 2 / / =  1. Consequently, for z >t 0, we write 

X=o~zp2-1-~ and ~b=,Szp2+~, =+2,8=1, [19] 

so that L ~ ~ 0 as z ~ oo, and the conditions on z = 0 become, most generally, 

, ~ = ~ = 7  on z = 0 .  p > c .  

and 

$ , = ( 3 - f l ) p  2, ; ~ = - ( 2 ~ + = ) p  2 on z = O ,  p < c ,  

for constants 7 and & 
Both these resultant problems for ~ and ;~ are equivalent to solving L_ = (X) = 0 for z/> 0 with 

X = A o n  z = 0, p > c, X,  = - Bp 2 o n  z = 0, p < c for constants A and B. Then X can be written 
as the Hankel transform 

X (p, z) = p I °° D(k  )J, (kp )e-k'dk, [20] 
Jo 

where 

o D (k)J, (kp) dk = Ap - i, p > c, 

f :  kD (k)J~ (kp) dk = Bp, p < c. 

[21] 

This pair of  integral equations belongs to the case considered by Titchmarsh, and summarized by 
Sneddon (1966), to show 

sin kc 4Be 2 ( 3 cos kc 3 sin k(~ 
D(k) = A k-----~ 3~k ,s in kc 4 kc k2c2 j .  [22] 

Taking the inverse transform is not direct, but it can be shown, on adapting different results from 
Erdelyi (1954), that 

f0 = sin kc 1 x/~ p 2 --~C Jl(kp)e-k*dk . . . .  p 2cp {[(Z:+ --c2)2+4C2Z2~--(z2+p2--c:)}½ 

and 

f0 2 sin k c \  k ~ L 1 x/~ (z 2 _ 292 _ c2 ) (sinkc 2coskc k'Vc~ .)j,( p)¢_ aK=~PP+6-~9 .. 
~, kc -t k~c: 

× { [0 '  + ,2 _ c~)~ + 4c~.q~_ (.~ + p~ _ c')}½- ~ { [ ( r  + p' - d ) '  + 4C2Z2]~ 

+ (z2 + ,,2 _ ,.2, ,½.=. PZarc sin {[ z 2c ~} 
" " "  - c '  ~ + ( p _ c ) ~ ] t + [ z ' + ( a + c ) ~  ' 

M.F 13/b.-~ 
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Substituting these into [20] and [22] gives the complete solution to the boundary value problem 
for X(p, z), and hence for ~(p, z) and ~(p, z) in terms of the constants 0~, B, Y and 6. 

The final step is to evaluate these four constants; one relation is already included in [19]. The 
remaining relations follow from requiring that the velocities Ul, v~ and wt are bounded in the 
neighbourhood of the run of the hole where p -- c, z = 0. Completing the detailed, but standard 
analysis finally yields 

Consequently, 

' n - l c  3 6 - 0 .  ~ =/~--~,  , y = - ~  , 

2c 
1 2 c3 2zP-----~ arc sin [z 2 c)2] ~ + [ z2 + (P dp(p,z) = z (p , z )  =-~ zp 6n 3n + (p _ 

4~/~cz p2 c2)2 + 4c2z2~i + (z 2 p2 }½ + - T ~ n  {[(z~+ - + -c=)  

+ c)2]~} 

(z 2 - 2p ~ - ~ c~){ [(z ~ + p~ - c2) ~ + 4 c 2 z ~  - (z  2 + p~ - c~)}½, [23] 
9n 

from which the velocities can be found through [18] to complete the solution for the symmetric 
part of the flow. This is a new solution, in a reasonably simple, closed form, of the Stokes equations. 

Of particular interest for subsequent work is the limiting form of [23] for small c, which is given 
by 

, / , - - z - - g z o - ~  1 ~ + z '  ' zi>O. [241 

When the basic linear shear flow is subtracted, it then follows that the dominant contribution to 
the perturbed velocities for the flow in the upper half-plane is given by 

c3zp: cos 0 c3z2p cos 0 
u --- 2~(P 2 + z2)~, v -~ 0, w - 2n(P 2 + z2)~, [25] 

in the lOwer half-plane the dominant contributions are u, v and - w .  
When a spherical coordinate system (R, o~, 0) is introduced by p = R sin co, z -- R cos oJ, and the 

velocities in the R, co and 0 directions are written as q/, ~ and ~/r respectively, then [25] can be 
expressed by 

c 3 sin 2o~ cos 0 
= 4n R2 and ~ = ~/P = 0; [26] 

the flow is completely radial in the spherical sense. The result [26] represents the fundamental 
singular solution for the shear flow past a small hole; the velocity introduced is proportional to 
the cube of the radius of the hole. 

In the lower half-plane the fluid upstream of the hole is drawn in towards the hole, and then 
forced away on the downstream side. The mass flux in the direction of 0 =, 0 is proportional to 

~:dzf~pusinOdO, 
which is a constant from [25]. If we use the representation (cf. Ranger 1973) 

ooso,  1 ) ooso(  ) = - ~ ~,si--n-~ O~ ~ ffi - -  O, and ~ ffi sin 0 O, 
~' R ~ ~ R sin 2 o~' 

for solutions of the Stokes equations in spherical coordinates, then [26] corx~ponds to 

• ~: - cos co sin 2 a~, [27] 

which is clearly a solution of L~I(O) = O. The corresponding axisymmetri¢ Stokes flow represents 
the source flow through a hole as given, for example, in Happel & Brenner (1983). 
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Professor Chwang kindly also calculated the representation for this 3-D singular solution [25] 
in terms of those catalogued by Chwang & Wu (1975), and the author again wishes to acknowledge 
his contribution. If us represents the velocity vector for a unit (3-D) Stokeslet in the x-direction, 
and uR for a unit (3-D) rotlet in the y-direction, then 

= +~'T and uR= • Us ~ R3 [28] 

Then he showed that the combination of a Stokes doublet and' rotlet, defined by 

OUs 
uc = - ~ -  z +uR, 

leads through [28] to 

3 x z  R 
U c =  R5 , 

which, in component form, shows 

3 z p  2 COS 0 3 p z  2 COS 0 
Uc ffi R s  , Vc ffi O, w c = - RS  ; 

this is exactly the same as [25] when the strengths of the doublet and rotlet are c3/6n.  

(B) We can develop the analogue in 3-D for the situation considered in section 2B. A sphere of 
unit radius has a small hole on the rim at the point R = 1, 0 ffi n in a spherical coordinate system 
with origin at the centre of the sphere. A flow past the sphere will then lead to a weak induced 
flow in the interior, which can be modelled by the singular solution [26] based at the hole. It is 
possible to proceed as was done in section 2B; however, here we take the alternative procedure 
of evaluating an asymptotic approximation of a previously calculated solution. Dorrepaal (1976) 
considered the asymmetric flow past a spherical cap, and when the angle of the cap tends to n, 
the flow we require will be described by the limiting form of his solution. 

We work directly with his notation for the remainder of this section. On p. 741 we put # = n - at 
where # << I. Then the coefficients show 

A~'~ = o(~'), 

A~ ) -- ( -  1)" #3 + O(#5), 
12n 

A(,3)ffi(-1)'p3+O(pS) for n = l , 2 , .  
6 ~  " " ' 

with the exception 
resulting series can 

where 

be summed to give the functions 

1 
~(r, 0) ffi 1-~#3(1 - r2)o(r, 0) and 

that 31 is added to AI ~) and .4t2); also, h = - 1 + O(fls). Consequently, the 

t'3(r, O) = 1 #3o(r, 0), 
OTt 

1 - - r  2 

o( r ,  0) ffi (1 + 2r cos 0 + r2)½ (1 - r cos 0), [29] 

(in Dorrepaal's notation still) to give a simple closed-form solution to the problem. The first term 
in [29] is equivalent to the singular solution [26] in the neighbourhood of the hole. In particular, 
the velocity on the centreline 0 = 0, n (called qt~ by Dorrepaal) can be found as 

q(0) = -~ f13(1  - r)(2 + r)(1 + r) -I cos ~. 

There is clearly no free eddy in this 3-D situation, and all the fluid particles traverse closed loops 
inside the sphere, passing through the singular point at the hole. 
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4. FLOWS PAST F I N I T E  SLITS 

We next consider the linear shear flow along an infinite plate in which there is a narrow slit of  
finite length. It is seen how to use the results gained earlier to motivate particular assumptions 
which guide steps taken in the solution. In each case a formal proof  would require an involved, 
and highly detailed analytical calculation; these are not considered here, to aid physical under- 
standing and for brevity. Specifically, we calculate the singular solution which represents the flow 
in the lower half-plane when the external shear flow is present in the upper half-plane, taking the 
slit to be a straight line first perpendicular, and then parallel to the direction of  the shear flow. 

(A) In the first situation, the narrow slit is positioned in the plane z = 0 along the y-axis for 
lYt < 1; the given shear flow in the upper half-plane is in the x-direction with velocity proportional 
to z. This situation is therefore intermediary between the limiting case discussed in section 2A when 
the slit has infinite length and that of  section 3A when it has zero length. Consequently, we can 
assume that the streamlines for the flow lie completely in planes of  the form z / x  = const, all of  
which include the y-axis. 

We now construct a cylindrical coordinate system O(X,  Y, ~), where x = X sin co, y = Y and 
z = X c o s  c~, let  U s in 2~  a n d  V s in  2~ be the velocities in the X-(radial) and Y-(axial) directions; 
the angular velocity in the ce-direction is zero. These representations for the velocities automatically 
give no-slip conditions on the plate • = 0, n. The equation of  continuity becomes 

U x +  X - I U  + V r = O  

with these representations, and so a stream function ~0(X, Y) exists such that 
U = X - ~ O r ,  V = - X - ~ x  . Further, the momentum equations in the X- and Y-directions are 

Uxx - X -) Ux - 3X  -2 U + Urr = O, 

and 

Vxx + X - 1 V  x - 4X -2 V + Vrr - 2 X  -l Ur = O, 

which show consistency when the stream function ~0 satisfies 

@xx - 3 X - ' @ x +  @vr = 0. [301 

The final momentum equation shows that the pressure is given by p = 2X-  ~ U sin 2c~. The earlier 
solutions [8] and [25] can now be seen as special cases; ~ oc Y corresponds to the effect of an infinite 
slit, and ~ oc 3 Y ( X  2 + y2)-½ _ y3(x:  + y2)-]  to the effect of  a hole. (The latter expression becomes 

oc 3 sin y - sin 3 y, where Y / X  = tan y.) 
To understand the effect of  the finite slit we must find solutions [30], and to this end we consider 

the existence of  solutions of  the form @ = F(r/) where X = sinh ~ cos ~/, Y = cosh ~ sin r/; this would 
indicate that the streamlines follow confocal hyperbolae in the X, Y-plane, with loci at 
X = 0, Y = + 1. The support for such a conjecture is well-established in known solutions for both 
the harmonic and biharmonic equations. We find, on substitution, that such solutions do in fact 
exist with F(~/) given by F " +  3 tan r / F ' =  0; hence 

F(v/) oc 3 sin r / -  sin 3 r/, [31] 

to agree with [26] as X, Y ~ ~ (i.e. ¢ ---, ~ ) .  In the original coordinate system we have 

2 sin 2 q = (x 2 + y2 + 1) - [(X 2 + y2 _ 1)2 + 4X2]½. 

The above discussion shows the existence of  the solution [31] which satisfies the Stokes equations, 
the no-slip conditions on the plate and has appropriate singular behaviour on the narrow slit. (To 
formally prove this is the only solution would require a process such as considering the flow past 
a hole with an elliptical profile, thereby generalizing section 3A, and then taking the limit as the 
area of  the ellipse tends to zero, maintaining the same foci.) 

The fluid in the lower half-plane is drawn towards the slit in planes with constant radial angles, 
and the streamlines followed are confocal hyperbolae within these planes, which therefore meet the 
slit perpendicularly. As X --, 0 along the slit I Y I < 1, the normal velocity U becomes infinite as X -  t, 
but the velocity along the slit satisfies Vx = 0 for X = 0, I Y I < 1; both U and V are zero for 
X = O ,  I Y I >  I. 
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(B) In the second case, the narrow slit is placed along the x-axis for Ixl < 1; the shear flow is 
still in the x-direction with velocity proportional to z. Here we are intermediary between the cases 
described in sections 2C (with a change of  notation) and 3A. In this situation we consider the 
possibility that the streamlines lie in planes of the form z/y = const. We can now repeat the 
equivalent calculations to those done above--here in an abbreviated form. 

The cylindrical coordinate system O(X, Y, fl) (quite separate from that of  part A) has 
x = X,y = Y sin fl, z = Y cosfl and the velocities in the Y-(radial) direction and X-(axial) 
directions are U cos fl and V cos fl, respectively. The radial and axial momentum equations show 

Urr-  Y-IUr+ Uxx=O and Vrr+ Y - I V y -  y-2V + Vxx=2Y-IUx 

with the pressure p = 2Y-~U cos fl from the angular momentum equation. These momentum 
equations are consistent when the stream function defined by U = Y - ~ x  and V = -  Y-~C'r 
satisfies the equation 

~rr -- 3Y-'~r+ 3 y - 2 ¢  + ~xx = O. [32] 

Special cases of  solutions for this equation are ~ ~ Y, which is equivalent to [13] (with the change 
of notation), and ~, ~ y3(X2 + y2)-], which is equivalent to [25]. To solve [32], we first write 
O/(X, Y) = Y~(X, Y), which requires d?rr- y-1 Jr + dPxx = 0, and so leads to the general solution 

O(X, Y) = y2 E(e)Ki (eY)cos eX de [331 

for some arbitrary function E(e); K~ represents a modified Bessel function. It is difficult to be 
certain of the exact form of the boundary conditions on Y = 0, but those which follow from taking 
the limit as the width of the slit tends to zero from the solution obtained for the flow parallel to 
the infinite slit in section 2, part C show 0roccons t  on Y=O, IXI<I  and 0 r = 0  on 
Y = 0, I X I > 1. With these conditions it follows that 

E(e) oc sin e/e. 

Evaluating the integral [33] which results from this form for E(e)  shows 

~/(X,Y)ocY{ X + I  X - 1  ]~} 
[ ( X  + 1) 2 + y2]½ --  [ ( X  - 1) 2 + y2 ; [34] 

and the behaviour ~O oc y3(X2 + y2)-½ as X, Y ~ oo is recovered, as necessary. The velocities are 
bounded everywhere except in the neighbourhood of the tips of the slits where they grow as R - 
when R = [(X _+ 1) 2 + y2]½. The streamlines in the azimuthal plane are smooth curves which are 
radial (in the spherical sense) at infinity. 

5. T W O - P H A S E  F L U I D  R E S U L T S  

The foregoing results can be extended to the two-phase situation where the fluid in the upper 
half-space has viscosity #l, and that in the lower half-space has viscosity #2. We reconsider the 
problem of section 2A alone, but a general result is gained which can be immediately extended to 
the other situations. 

We write #~(x,y) and #2(x,y) as the stream functions in the half-planes y > 0  and y < 0  
respectively, and require ~,~ -~ y2 as y --* + 00, ~'2 ~ 0 as y --. - 00. On the fine y = 0, Ix [ > a, we 
have ¢,~ = ~,.  = 0 plus ~2 = ~2y = 0 as the no-slip conditions. On the interface y = 0, Ix[ < a, it is 
necessary that the velocity is continuous for ~ = ~,, and ~,~y = ~%, and finally that the components 
of stress on the surface are also continuous, which require /11(~'l, -- Olxx) =/12(~'2, -- ~'Z,x) plus 
Pl "1- 2111 ~llxy raP2 "1- 2/12~2xy, where p represents the pressure. 

It is sufficient to write ~,(x, y)  = yc~,(x, y) for i = l, 2, where V2~bi = O, and expressing the above 
conditions in terms of  ~b,. leads to 

~ b , = ~ : = O  on y = O ,  I x l > a ,  "~ 
[35] / c~j=ck2, /1~y=/12~2y on y = 0 ,  Ixl<a. 
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To find the potential functions ~ and ~2, we write 

>10, 

and 

q~2= foA2(~)el~Y-~d~, y ~<0; 

on solving the resultant pair of dual integral equations it follows that 

AI(~)=A2(~)= alh Jl(a~) 
/~, + ~t2 2~t [36] 

The final solutions can be obtained on evaluating the equivalent integrals to those in section lA. 
Consequently, the streamlines in the lower half-plane are exactly those found previously for the 
homogeneous fluid; the only difference being that the velocities are now multiplied by the factor 
2/~,(~1 + #2) -1. 

Hence, the sketch of the streamlines in figure 1 is still correct for y < 0 in the two-phase flow, 
and for y t> 0 the only change is that the deflection of the streamlines from the horizontal fines 
must be multiplied by 2/~1(/~ +/~2) throughout. 

This last statement is still valid in the 3-D situation for the flows described in sections 2C, 3A 
and 4. 
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